Implement Positional Encoding in PyTorch for a Transformer
To provide your Transformer with essential information about token order, you can add positional encodings to the input embeddings. The following PyTorch module generates these encodings using a sinusoidal formula, which creates unique values for each position in the sequence.
```python
import torch
import torch.nn as nn
import math
class PositionalEncoding(nn.Module):
def __init__(self, embed_size, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, embed_size)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, embed_size, 2).float() * (-math.log(10000.0) / embed_size))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe.unsqueeze(0))
def forward(self, x):
# Add positional encoding to the input embeddings
return x + self.pe[:, :x.size(1), :]
```